Berkowitz, La Susan Strome
Published in
Development
During Caenorhabditis elegans embryogenesis the primordial germ cell, P(4), is generated via a series of unequal divisions. These divisions produce germline blastomeres (P(1), P(2), P(3), P(4)) that differ from their somatic sisters in their size, fate and cytoplasmic content (e.g. germ granules). mes-1 mutant embryos display the striking phenotype...
Amiri, A Keiper, Bd Kawasaki, I Fan, Y Kohara, Y Rhoads, Re Susan Strome
Published in
Development
Control of gene expression at the translational level is crucial for many developmental processes. The mRNA cap-binding protein, eIF4E, is a key player in regulation of translation initiation; appropriate levels of eIF4E are essential for normal cell-cycle regulation and tissue differentiation. The observation that eIF4E levels are elevated during ...
Daubresse, G Deuring, R Moore, L Papoulas, O Zakrajsek, I Waldrip, Wr Scott, Mp Kennison, Ja John Tamkun
Published in
Development
The Drosophila kismet gene was identified in a screen for dominant suppressors of Polycomb, a repressor of homeotic genes. Here we show that kismet mutations suppress the Polycomb mutant phenotype by blocking the ectopic transcription of homeotic genes. Loss of zygotic kismet function causes homeotic transformations similar to those associated with...
Papoulas, O Beek, Sj Moseley, Sl Mccallum, Cm Sarte, M Shearn, A John Tamkun
Published in
Development
The trithorax group gene brahma (brm) encodes an activator of Drosophila homeotic genes that functions as the ATPase subunit of a large protein complex. To determine if BRM physically interacts with other trithorax group proteins, we purified the BRM complex from Drosophila embryos and analyzed its subunit composition. The BRM complex contains at l...
Holdeman, R Nehrt, S Susan Strome
Published in
Development
A unique and essential feature of germ cells is their immortality. In Caenorhabditis elegans, germline immortality requires the maternal contribution from four genes, mes-2, mes-3, mes-4 and mes-6. We report here that mes-2 encodes a protein similar to the Drosophila Polycomb group protein, Enhancer of zeste, and in the accompanying paper that mes-...
Bender, Lb Suh, J Carroll, Cr Fong, Y Fingerman, Im Briggs, Sd Cao, R Zhang, Y Reinke, V Susan Strome
...
Published in
Development
Germ cell development in C. elegans requires that the X chromosomes be globally silenced during mitosis and early meiosis. We previously found that the nuclear proteins MES-2, MES-3, MES-4 and MES-6 regulate the different chromatin states of autosomes versus X chromosomes and are required for germline viability. Strikingly, the SET-domain protein M...
Hill, Dp Susan Strome
Published in
Development
We are investigating the involvement of the microfilament cytoskeleton in the development of early Caenorhabditis elegans embryos. We previously reported that several cytoplasmic movements in the zygote require that the microfilament cytoskeleton remain intact during a narrow time interval approximately three-quarters of the way through the first c...
Berkowitz, La Susan Strome
Published in
Development
During Caenorhabditis elegans embryogenesis the primordial germ cell, P(4), is generated via a series of unequal divisions. These divisions produce germline blastomeres (P(1), P(2), P(3), P(4)) that differ from their somatic sisters in their size, fate and cytoplasmic content (e.g. germ granules). mes-1 mutant embryos display the striking phenotype...
Beanan, Mj Susan Strome
Published in
Development
The C. elegans germ line is generated by extensive proliferation of the two germ-line progenitor cells present in newly hatched larvae. We describe genetic and phenotypic characterization of glp-4, a locus whose product is required for normal proliferation of the germ line. glp-4(bn2ts) mutant worms raised at the restrictive temperature contain app...
Zovein, Ann C Forsberg, E Camilla
Published in
Development (Cambridge, England)
In February 2015, over 200 scientists gathered for the Keystone Hematopoiesis meeting, which was held at the scenic Keystone Resort in Keystone, Colorado, USA. The meeting organizers, Patricia Ernst, Hanna Mikkola and Timm Schroeder, put together an exciting program, during which field leaders and new investigators presented discoveries that spanne...